Vue normale Vue MARC vue ISBD

Apprentissage artificiel [ Livre] : deep learning, concepts et algorithmes / Antoine Cornuéjols, Laurent Miclet, Vincent Barra

Auteur principal: Cornuéjols‏ , Antoine‏ , Auteur IdrefCo-auteur: Miclet‏ ‎, Laurent‏, Auteur Idref;Barra, Vincent‏ , Auteur IdrefLangue : français.Mention d'édition: 3e éditionPublication : 14-Condé-sur-Noireau : Impr. CorletDescription : 1 volume de X-899 pages : illustré en noir, couverture illustrée en couleur ; 23 cm.ISBN : 9782212675221.Collection: AlgorithmesDewey : 006.31, 23Classification : Résumé : Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web... Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel". La troisième édition de ce livre a été complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données. .Sujet - Nom commun: 3873
    classement moyen : 0.0 (0 votes)
Type de document Site actuel Cote Statut Notes Date de retour prévue
 Livre Livre Bibliothèque Universitaire Mohamed Sekkat
2ème étage
006.31 COR (Parcourir l'étagère) Exclu du prêt New 2018

Bibliographie pages 851-889. Index

Les programmes d'intelligence artificielle sont aujourd'hui capables de reconnaître des commandes vocales, d'analyser automatiquement des photos satellites, d'assister des experts pour prendre des décisions dans des environnements complexes et évolutifs (analyse de marchés financiers, diagnostics médicaux...), de fouiller d'immenses bases de données hétérogènes, telles les innombrables pages du Web...
Pour réaliser ces tâches, ils sont dotés de modules d'apprentissage leur permettant d'adapter leur comportement à des situations jamais rencontrées, ou d'extraire des lois à partir de bases de données d'exemples. Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel".
La troisième édition de ce livre a été complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.

Il n'y a pas de commentaire pour ce document.

Connexion à votre compte pour proposer un commentaire.

© tous droits réservés 2023 | Bibliothèque Universitaire Mohamed Sekkat
Site web http://bums.univh2c.ma/
E-mail : bibliosekkat@univh2c.ma
Tél : +212 666 036 169 / 666 035 560

Propulsé par Koha